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1Departamento de Quı́mica-Fı́sica, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, Albacete,

Spain, 2Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Biológicas, Universidad de Murcia, Spain,
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Abstract
The time course of the residual enzyme activity of a general model consisting of an autocatalytic zymogen activation process
inhibited by an irreversible competitive inhibitor and an irreversible uncompetitive inhibitor has been studied. Approached
analytical expressions which furnish the time course of the residual enzyme activity from the onset of the reaction depending
on the rate constants and initial concentration have been obtained. The goodness and limitations of the analytical equations
were checked by comparing with the results obtained from the numerical integration, i.e. with the simulated progress curves.
A dimensionless parameter giving the relative contributions of both the activation and the inhibitions routes is suggested, so
that the value of this parameter determines whether the activation or the inhibitions routes prevail or if both processes are
balanced during the time for which the analytical expressions are valid. The effects of the initial zymogen, free enzyme and
inhibitors concentrations are analysed. Finally an experimental design and kinetic data analysis is proposed to evaluate
simultaneously the kinetic parameters involved and to discriminate between different zymogen activation processes which can
be considered particular cases of the general model.
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Introduction

Autocatalytic zymogen activation is a phenomenon of

great importance for understanding some fundamen-

tal physiological processes involved in the enzyme

regulation of gastrointestinal-track enzymes [1,2],

blood coagulation and fibrinolysis [3–5]. Examples of

such processes are the activation of prekallikrein,

trypsinogen and pepsinogen, all of them being

controlled by natural proteinase inhibitors [6].

A major incentive in inhibitor research is that

control of proteolysis is a valid pharmacological

principle. Inhibitors have indeed proved useful in

controlling pathogenesis in many animal models of

proteolysis. The proteinase inhibitors are effective in

human therapy [3,6,7]. A pathological increase in

fibrinolysis, e.g., in leukaemia or in operations

involving organs with a high fibrinolysis activator

content such as the uterus, prostate or lungs, can be

controlled by the use of inhibitors such as 1-

aminocaproic acid, p-aminomethylbenzoic acid or

aprotinin. These products inhibit plasmin, trypsin,

chymotrypsin and kallikrein, the last one being the

most important protein responsible for the release of

bradykinin from kininogen [3].
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The transient phase kinetic analysis of a global

model of an autocatalytic zymogen activation process

overlapped with irreversible competitive inhibition

was carried out by Manjabacas et al. [8]. More

recently Manjabacas et al. [9] extended their analysis

to the case in which the irreversible inhibition is

mixed, therefore including as particular cases those in

which the inhibitor is competitive, noncompetitive,

mixed or uncompetitive, having in this way a more

general vision of the kinetic behaviour of zymogen

activation reactions in the presence of one irreversible

inhibitor.

In this contribution we treat the case in which two

different two-steps irreversible inhibitors act on an

autocatalytic zymogen activation system, one of them

being competitive and the other uncompetitive. The

reaction mechanism proposed is shown in Scheme 1

where Z, E, W, I and I0 are the zymogen, the activating

(and activated) enzyme, one or more peptides released

from Z, and the two different inhibitors, respectively.

We will assume that the three reversible steps are in

rapid equilibrium.

Notation and definitions

[E], [Z], [I], [I0], [EZ], [EI], [EZI0]: Instantaneous

concentrations of the species indicated.

[E]0, [Z]0, [I]0, [I0]0: Initial concentrations of E, Z, I

and I0, respectively.

[ET]: Instantaneous residual enzyme activity, i.e.

the total concentration, at time t, of the active enzyme

forms:

½ET� ¼ ½E� þ ½EZ� þ ½EI� þ ½EZI0� ð1Þ

[ET]0: Value of [ET] at t ¼ 0, i.e.:

½ET�0 ¼ ½E�0 ð2Þ

K1, K3, K0
3: Equilibrium dissociation constants of the

complexes EZ, EI and EZI0, respectively:

K1 ¼
k21

k1

ð3Þ

K3 ¼
k23

k3

ð4Þ

K
0

3 ¼
k

0

23

k
0

3

ð5Þ

Q1, Q3, Q0
3: The expressions:

Q1 ¼
½E�½Z�

½EZ�
ð6Þ

Q3 ¼
½E�½I�

½EI�
ð7Þ

Q
0

3 ¼
½EZ�½I 0�

½EZI 0�
ð8Þ

h1:

Near the end of the reaction either [E]/[E]0 or

[Z]/[Z]0 must necessarily be less than unity according

to the inhibition or the activation which prevails at this

reaction time. We must arbitrarily fix a value to that of

the above quotients being less than the unity for which

we can consider the reaction is practically finished. We

denote this quotient as h1 and give it the value 1024,

what means that we consider a reaction time at which

either ½E�=½E�0 ¼ 1024 or ½Z�=½Z�0 ¼ 1024.

t1:

The time the system takes to either [E]/[E]0 or

[Z]/[Z]0 is equal to h1

u:

If there is a reaction time different to zero at which

[ET] ¼ [E0], we name it u. This parameter, u, means

the time at which the prevalence of the activation

changes to the prevalence of the inhibition or vice versa

in Scheme 1 [see Figures 2(A) and 4(A)].

Kinetic behaviour from numerical integration

The kinetic behaviour of enzyme systems evolving

according to Scheme 1 is described by the set of

differential equations (A1)–(A10) in the Appendix.

This system is not linear and, therefore, it does not

admit any exact analytical solution. Thus, a

complete vision of the time course of the systems

is only reachable by numerical integration from

arbitrary sets of values of the rate constants and

initial concentrations. We have selected three cases

giving considerably different kinetic behaviours. The

values of the rate constants and [E]0, [Z]0, [I]0 and

[I0]0 for each of the cases are summarised in Table I.

By numerical integration for the above initial

conditions and kinetic parameter values we obtained,

for each case (1–3) in Table I, the time course of [E],

[EZ], [EI], [EZI0], [Z], [I] and [I0] and, using

Equation (1), the simulated progress curve of [ET]

[Figures 1(A)–3(A)], using Equations (6)–(8) the

time progress of Q1/K1, Q3/K3, Q0
3/K0

3 [Figures 1(B)–

3(B)] and using the [Z]0–, [I]0– and [I0]0-values the

time progress curves of [Z]/[Z]0, [I]/[I]0 and [I0]/[I0]0

[Figures 1(C)–3(C)]. The values of K1, K3 and K0
3

needed for plots in Figures 1(B)–(3(B) are obtained

from Equations (3)–(5) and the corresponding values
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of k1, k21, k3, k23, k0
3 and k0

23 in Table I for the

corresponding cases. For all cases (1–3) the values of

the equilibrium constants are: K1 ¼ 9 £ 1025 M,

K3 ¼ 8 £ 1025 M and K0
3 ¼ 1023 M.

In Figures 1–3 we have arbitrarily chosen

h1 ¼ 0.0001 and, therefore, the simulated progress

curves in Figures 1–3 were plotted up to the

corresponding t1 defined above. In Table II we

summarise the t1-values for each case. Note that only

the numerical integration of the differential Equations

(A1)–(A7) is needed to have [E], [EZ], [EI], [EZI0],

[Z], [I] and [I0].

Approached analytical solution giving the time

course of [ET]

Assumptions

In order to obtain approached analytical solutions we

have to make some assumptions for the set of

differential equations (A1)–(A10) approximately to

become linear. For this task we will consider a reaction

time for which [Z], [I] and [I0] do not considerably

differ (e.g. not more than 10%) from [Z]0, [I]0 and

[I0]0, respectively.

½Z�=½Z�0 u 1

½I�=½I�0 u 1

½I0�=½I0�0 u 1

9>>=
>>;

ð9Þ

In order to assumptions (9) are observed, the

following conditions, easy to be reach experimentally,

are necessary:

½Z�0 .. ½E�0

½I�0 .. ½E�0 þ ½Z�0

½I0�0 .. ½Z�0

Reaction time assayed so that ½ET� ! ½Z�0

9>>>>>=
>>>>>;

ð10Þ

The last of conditions (10) should really be the less

restrictive one:

Reaction time assayed so that ½E� ! ½Z�0 ð11Þ

but since [ET] is easy to measure experimentally by a

discontinuous method, we have chosen this last more

restrictive condition which, according to Equation (1),

includes condition (11).

If in Equations (A1)–(A4) we insert conditions (9),

i.e. we replace [Z], [I] and [I0] by [Z]0, [I]0 and [I0]0,

we have a linear set of four differential equations which

already admits analytical solution. Nevertheless, these

analytical solutions giving [E], [EZ], [EI] and [EZI]

and, therefore, [ET] would result in tetraexponential

equations which are not suitable for any easy

treatment. Thus, we make the additional assumption

that the three reversible steps in Scheme 1 reach the

equilibrium from practically the onset of the reaction,

i.e. that:

Q1=K1 u 1

Q3=K3 u 1

Q0
3=K0

3 u 1

9>>=
>>;

ð12Þ

From Equations (6)–(8) assumptions (12) can also

be expressed as:

½E�½Z�=½EZ� u K1

½E�½I�=½EI� u K3

½EZ�½EZI0�=½EZI0� u K0
3

9>>=
>>;

ð13Þ

Kinetic analysis

From assumptions (12) and Equation (1) we obtain:

½EZ� ¼
½ET �½Z�

K1D
ð14Þ

½EI� ¼
½ET �½I�

K3D
ð15Þ

½EZI 0� ¼
½ET �½Z�½I

0�

K1K
0

3D
ð16Þ

Table I. Arbitrary set of values of the rate constants and initial concentrations corresponding to the three cases (1–3). For all of these cases

[E]0 ¼ 10 nM and k21 ¼ 900 s21, k3 ¼ 107 M21 s21, k023 ¼ 500 s21 and k04 ¼ 0.015 s21. The values of k1, k2, k23, k4, [Z]0, [I]0 and [I0]0 are

indicated in the corresponding columns.

Case k1 (M21s21) k2 (s21) k23 (s21) k4 (s21) k03 (M21 s21) [Z]0 (mM) [I]0 (mM) [I0]0 (mM)

1 1.0 £ 107 0.5 800 0.1 5 £ 105 0.10 0.001 0.01

2 1.0 £ 107 5 800 0.1 5 £ 105 0.10 1.000 1.00

3 1.0 £ 107 5 800 0.1 5 £ 105 0.01 1.00 1.00

Table II. Values of t1, u, tmax and [ET]max for each of the cases

(1–3) of Table 1 obtained from the numerical integration.

Case t1 (s) u (s) tmax (s) [ET]max (nM)

1 60.804 — — —

2 218.56 141.27 38.320 43289

3 129.30 — — —

Inhibition of autocatalytic zymogen activations 637



where

D ¼ 1 þ
½I�

K3

þ
½Z�

K1

þ
½Z�½I 0�

K1K
0

3

ð17Þ

To derive the time course of [ET] under the

above assumptions we add, side by side differential

Equations (A.1)–(A.4) in the Appendix, resulting:

d½ET �

dt
¼ k2½EZ�2 k4½EI�2 k04½EZI

0� ð18Þ

where Equation (1) has been taken into account.

Then, if we replace in Equation (18) [E], [EZ], [EI]

and [EZI0] by their expressions in Equations (14)–

(16) [i.e. we use assumptions (12)], we have:

d½ET �

dt
<2

k
0

4K3½Z�½I
0�þk4K1K

0

3½I�2K3K
0

3k2½Z�

K1K3K
0

3þK1K
0

3þK3K
0

3½Z�þK3½Z�½I 0�
·½ET �

ð19Þ

If in Equation (19) we replace [Z], [I] and [I0] by

[Z]0, [I]0 and [I0]0 and we integrate with the initial

condition given by Equation (2) one obtains:

½ET� u ½E�0:e
2lt ð20Þ

where

l ¼
k

0

4K3½Z�0½I
0�0 þ k4K1K

0

3½I�0 2K3K
0

3k2½Z�0

K1K3K
0

3 þK1K
0

3½I�0 þK3K
0

3½Z�0 þK3½Z�0½I 0�0

ð21Þ

Equation (21) can also be rewritten as:

l ¼
ðk

0

4K3½Z�0½I
0�0 þ k4K1K

0

3½I�0Þ�ð1 2 rÞ

K1K3K
0

3 þK1K
0

3½I�0 þK3K
0

3½Z�0 þK3½Z�0½I 0�0

ð22Þ

with

r ¼
K3K

0

3k2½Z�0

k
0

4K3½Z�0½I 0�0 þ k4K1K
0

3½I�0
ð23Þ

In Figures 1(A)–3(A) we have plotted Equation

(20) for cases [1–3] in Table I, respectively.

Material and methods

The simulated progress curves were obtained by

numerical integration (A1)–(A7), using a set of

arbitrary, but realistic values of the initial concen-

trations and the rate constants. This numerical

solution was found by using the classical fourth-

order Runge-Kutta formula, but applying an

adaptative stepsize control originally invented by

Fehlberg [10,11] using the computer program WES

implemented in MicroSoft Visual Cþþ6.0 [12].

The plots of the data obtained from the numerical

integration as well as the plot of Equations (20) and

Figure 1. Time progress curves for case (1) in Table I. (A)

Simulated progress curve of [ET] (———) and plot of Equation (20)

(– – – –). Insert: the details in the 10 first seconds of the reaction. The

simulated progress curves of [ET] has been obtained from the

simulated progress curves of [E], [EZ], [EI] and [EZI0] and Equation

(1). For ease we plotted the dimensionless quotient [ET]/[E]0. (B)

Time progress curves of the dimensionless quotients Q1/K1, Q3/K3

and Q0
3/K0

3. The time courses of Q1, Q3 and Q0
3 has been obtained

from Equations (6)–(8) and from simulated progress curves of [E],

[EZ], [EI] and [EZI0]. The values of K1; K3 and K0
3 are given in

Table IV. (C) Simulated progress curves of the dimensionless

quotients [Z]/[Z]0, [I]/[I]0 and [I0]/[I0]0. In (A), (B) and (C) the up

reaction time value is the corresponding t1-value in Table II.
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(25) were performed using the software SigmaPlot

Scientific Graphing System, version 8.02 (2002, SPSS

Inc) for Windows.

The above program was run on a PC compatible

computer based on a Pentium IV processor, running

at 2 GHz and with 512 Mbytes of RAM.

Results and discussion

We have analysed the kinetic behaviour of enzyme

systems evolving according to Scheme 1 both from

numerical integration of the set of Equations (A1)–

(A7) in the Appendix and from approached analytical

integration of the set of Equations (A1)–(A4) in the

Appendix.

Figure 2. Time progress curves for case (2) in Table I. (A)

Simulated progress curve of [ET] (———) and plot of Equation (20)

(– – – –). Insert: the details showing the u-value. The simulated

progress curves of [ET] have been obtained as explained in Figure 1.

For ease we plotted the dimensionless quotient [ET]/[E]0. (B) Time

progress curves of the dimensionless quotients Q1/K1, Q3/K3 and

Q0
3/K0

3 obtained as explained in Figure 1. (C) Simulated progress

curves of the dimensionless quotients [Z]/[Z]0, [I]/[I]0 and [I0]/[I0]0.

In (A), (B) and (C) the up reaction time value is the corresponding

t1-value in Table II.

Figure 3. Time progress curves for case (3) in Table I. (A)

Simulated progress curve of [ET] (———) and plot of Equation (20)

(– – – –). The simulated progress curves of [ET] have been obtained

as explained in Figure 1. For ease we plotted the dimensionless

quotient [ET]/[E]0. (B) Time progress curves of the dimensionless

quotients Q1/K1, Q3/K3 and Q0
3/K0

3 obtained as explained in

Figure 1. (C) Simulated progress curves of the dimensionless

quotients [Z]/[Z]0, [I]/[I]0 and [I0]/[I0]0. In (A), (B) and (C) the up

reaction time value is the corresponding t1-value in Table II.
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Numerical solution

For the kinetic behaviour from numerical integration

we have chosen, as examples, the three cases (1–3) in

Table I. Note that both activation and inhibition

routes compete and that, according to the rate and

initial concentrations values, the time course of [ET]

can be very different; thus, in case (1) the activation of

E prevails from the onset of the reaction [Figure 1(A)];

in case (2) the activation prevails until t ¼ u and then

the inhibition prevails until the end of the reaction;

before the reaction time reaches the u-value, [ET]

reaches its maximum [ET]max at t ¼ tmax

[Figure 2(A), Table II]; in case (3) the inhibition

route prevails from the onset of the reaction and [ET]

continuously decreases from t ¼ 0 until it vanishes at

the end of the reaction [Figure 3(A)]

Moreover, for each of these cases we have plotted in

Figures 1(B)–3(B) the quotients Q1/K1, Q3/K3 and

Q0
3/K0

3. Note that for cases 1–3 the quotients Q1/K1,

Q3/K3 and Q0
3/K0

3 remain near unity, i.e. the reversible

steps in these cases can be considered, in the three

cases, in a rapid equilibrium from practically the onset

of the reaction.

In Figures 1(C)– 3(C) we have plotted the time

courses of the quotients [Z]/[Z]0, [I]/[I]0 and [I0]/[I0]0

where the time course of [Z], [I] and [I0] were obtained

from the corresponding numerical integration. Note

that, except in case (3), at least one of these quotients

decreases greatly from a certain reaction time. In case

(3) these three quotients remain near unity during

whole course of the reaction.

Analytical approached solution

Apart from the results obtained from the numerical

integration, we obtained approached analytical

Equation (20) valid for that reaction time from the

onset of the reaction for which assumptions (9) and

(12) are observed [Figures 1(A)–3(A)]. Since,

according to the numerical integration, in cases (1),

(2) and (3) a rapid equilibrium exists in each of the

reversible steps [Figures 1(B)–3(B)], the time range

of fulfilment of Equation (20) is only determined by

the time range for which assumptions (9) prevail as is

easy to see by comparing Figures 1(C), 2(C) and 3(C)

with Figures 1(A), 2(A) and 3(A), respectively. Note

that, in case 3, Equation (20) is valid during the whole

course of the reaction because both assumptions (9)

and (12) are also observed during the whole reaction.

Dimensionless parameter r

According to Equation (23) r can be higher than,

equal to or less than unity. Depending on whether

r . 1 [or according to Equation (7) l , 1], r ¼ 1 [or

according to Equation (7) l ¼ 0], or r , 1 [or

according to Equation (7) l . 1], the residual activity

exponentially increases (the activation prevails on the

inhibition), remains constant and equal to the unity

(the activation and the inhibition are balanced) or

exponentially decreases (the inhibition prevails on the

activation). In short, the parameter r determines the

relative contribution of both routes. In Table III we

show the l- and r-values for each of cases (1–3).

Parameter r is [E]0-independent and [Z]0–, [I]0–

and [I0]0–dependent. Therefore, for any set of values

of the rate constants, the [Z]0–, [I]0– and [I0]0-values

determine whether r . 1, r ¼ 1 and r , 1. The set of

points representing all different possible combinations

of [Z]0–, [I]0 and [I0]0-values for which r ¼ 1 forms a

three dimensional surface that we will name as r ¼ 1-

surface. On one side of these surfaces r . 1 and on the

other side r , 1. For any r ¼ 1–surface [Z]0 is related

Figure 4. Spatial regions, according to Equation (23),

corresponding to the rate constants of cases (2) and (3) in Table I

which prevail, according to the values of [Z]0, [I]0 and [I0]0, the

activation (r . 1) or the inhibition (r , 1). The surface separating

both special regions, i.e. the r ¼ 1-surface, corresponds to those

[Z]0-, [I]0- and [I0]0-values for which the activation and the

inhibition routes are balanced (r ¼ 1). (A) A perspective. (B)

Another perspective.
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with [I]0 and [I0]0 through:

½Z�0 ¼
k4K1K

0
3½I�0

k2K3K
0
3 2 k04K3½I 0�0

ð24Þ

Note that, because of [Z]0 being a non-negative

quantity, the possible upper [I0]0–value in the

r ¼ 1-surfaces is given by k2K0
3/k0

4 which is [Z]0– and

[I]0-independent. In Figure 4 we represent the r ¼ 1-

surface for the arbitrary common set of values of the

rate constants of cases (2) and (3).

Particular cases of Scheme 1

From Scheme 1 arise many other schemes which can

be regarded as real or formal particular cases of

Scheme 1, such as Schemes 2–9. In Table IV are

shown the changes reducing Scheme 1 to its

corresponding particular case.

Kinetic equations of the particular cases of Scheme 1

[ET] for any of the several particular cases of Scheme 1

can be obtained in an individualised way from its

corresponding set of differential equations or, what is

easier, setting in Equation (20) for Scheme 1 the same

changes allowing Scheme 1 to become the scheme

under study. As an example, for Scheme 7 the time

course of [ET] is given by:

½ET � ¼ lim
½I 0�0!0

½E�0e
lt ðScheme 7Þ ð25Þ

where l is given by Equation (21). The result is, after

insertion into Equation (21) of [I0]0 ¼ 0, an equation

as Equation (20), but where now l is given by:

l ¼
k4K1½I�0 2K3½Z�0

K1K3 þK1½I�0 þK3½Z�0
ðScheme 7Þ ð26Þ

Hence, the corresponding expressions of r is

obtained as:

r ¼ lim
½I 0�0!0

K3K
0

3k2½Z�0

k
0

4K3½Z�0½I 0�0 þ k4K1K
0

3½I�0

ðScheme 7Þ

ð27Þ

i.e.,

r ¼
K3k2½Z�0
k4K1½I�0

ðScheme7Þ ð28Þ

Analogously one can proceed for all of the other

particular schemes.

Scheme 2.

Table III. Changes to be made in Scheme 1, so that it becomes

Schemes 2–9.

Scheme Changes in Scheme 1

2 I0 h I (i.e. both inhibitors coincide)

3 k0
4 ¼ 0

4 k4 ¼ 0

5 k4 ¼ k04 ¼ 0

6 [I0]0 ¼ 0 (or k0
3 ¼ 0)

7 [I0]0 ¼ 0 (or k0
3 ¼ 0)

8 [I]0 ¼ 0 (or k3 ¼ 0) and [I0]0 ¼ 0 (or k0
3 ¼ 0)

9 k4 ¼ 0 and [I0]0 ¼ 0 (or k03 ¼ 0)

Table IV. Values of r and l for cases 1–3 in Table I.

Case r (s21)

1 392.1568 20.2595836

2 4.385964 20.2727915

3 0.443853 0.0507288

Scheme 1.

Scheme 3.

Inhibition of autocatalytic zymogen activations 641



Experimental design, kinetic data analysis and

discrimination between the particular cases of Scheme 1

Equation (21) can be rewritten as:

l ¼
aþ b½I�0 þ b0½I 0�0
cþ d½I�0 þ d 0½I 0�0

ð29Þ

where for Scheme 1 the coefficients a,b,b0,c, d and d0

are:

a ¼ 2k2K3K
0
3½Z�0 ð30Þ

b ¼ K1K
0
3k4 ð31Þ

b0 ¼ k
0

4K3½Z�0 ð32Þ

c ¼ K3K
0

3ð½Z�0 þK1Þ ð33Þ

d ¼ K1K
0

3 ð34Þ

d 0 ¼ K3½Z�0 ð35Þ

Note that it is observed that:

b=d ¼ k4 ð36Þ

b0=d 0 ¼ k04 ð37Þ

Equations (29)–(35) for any particular case of

Scheme 1 become simplified after inserting the same

changes which allowed Scheme 1 to become the

scheme under study, as explained above. For the

purpose of this section, it is interesting to dispose of

the expressions of l for Schemes 8, 7 and 6 which are:

l ¼
2k2½Z�0
K1 þ ½Z�0

ðScheme 8Þ ð38Þ

l ¼
aþ b½I�0

cþ d½I�0
ðScheme 7Þ ð39Þ

l ¼
aþ b0½I 0�0

cþ d 0½I 0�0
ðScheme 6Þ ð40Þ

If the inhibitors I and I0 are different, we suggest the

following steps in the evaluation of the kinetic

parameters additionally yielding the compatible

scheme of activation:

(1) Carrying out different assays in the absence of

inhibitors (so that Scheme 1 results reduced to

Scheme 8) in order to obtain different time

progress curves of [ET] at different [Z]0-values.

(2) Fitting each of the progress curves of [ET]

obtained in step (1) to Equation (20) in order to

obtain the corresponding l-value for each of the

progress curves.

(3) According to Equation (38), a plot of the

(21/l)-values vs 1/[Z]0 gives a straight line with

the slope K1/k2 and the ordinate intercept 1/k2

from where the evaluation of k2 and K1 is

immediate.

(4) In different assays in absence of inhibitor I0 but

in presence of inhibitor I (so that Scheme 1

results reduced to Scheme 7) one obtains

different time progress curves, all of them at a

fixed [Z]0–value, but each of them at a different

[I]0–value.

(5) Proceeding as in step (2).

Scheme 7.

Scheme 4.

Scheme 5.

Scheme 6.
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(6) Fitting the different l-values to Equation (39)

in order to obtain the coefficients b and d.

(7) According to Equation (36) the quotient b/d

directly gives k4.

(8) From the d- and K1-values we have, according

to Equation (34), the K0
3-value.

(9) Proceeding as in steps (4)–(7), but in absence

of I and in presence of I0 (so that Scheme 1

results reduced to Scheme 6) and fitting the l-

values to Equation (40) in order to obtain the

coefficients b0 and d0 from which, according to

Equation (37), we yield directly k0
4.

(10) According to Equation (35), from the d0- and

the fixed [Z]0– values one obtains K3.

If the inhibitors I and I0 coincide, then we are in the

case already studied by Manjabacas et al. [9].

Additional remarks

It is known that the action of only one inhibitor

(competitive, non-competitive, uncompetitive or

mixed) on enzyme systems not involving zymogen

activation is a aspect of the enzyme kinetics widely

studied and they are already part of all text books on

enzyme kinetics. Nevertheless, some years ago, there

were no analyses yet on the kinetic behaviour of

enzyme systems involving zymogen activation under

the action of one only inhibitor (competitive, non-

competitive, uncompetitive or mixed). Thus, to fill

this void, not very long ago our research team began

to analyse the kinetics of these types of inhibitory

processes for completeness [8,9,13–15]. More

recently, other groups have also provided some

contributions in this field [16]. With regard to the

kinetic analyses of the action of not only one inhibitor

but of a mixture of different inhibitors on an enzyme

system, there are also analyses handling enzyme

systems not involving zymogen activation [17–21],

but no similar contributions concerned with zymogen

activation processes have yet been reported. Thus,

for analogy with the case of the action of one only

inhibitor, with the present contribution our aim is to

begin to extend kinetic analyses involving a mixture of

inhibitors to zymogen activation processes.

Pepsinogen, trypsinogen, kallikrein, etc. are some

examples of the activating enzymes of their own

zymogens and, at the present, many competitive and

uncompetitive inhibitors, reversible or irreversible, of

these activating enzymes are known and continuously

more and more natural or synthetic inhibitors are being

reported [3,6,7,22–24]. Moreover, cells have different

types of proteases and mixtures of different inhibitors.

So it is very probable that an experimentalist worker

will need to handle an autocatalytic zymogen activation

process inhibited by a mixture of two different

inhibitors whose reaction mechanism fits Scheme 1

or to any of its particular cases described below.

The kinetic study made here is based both in the

numerical integration of the set of non linear

differential equations (A1)–(A7) as well as in the

approached analytical equations obtained from the

above system under linearising [assumptions (9)] and

simplifying ones [assumptions (12)]. The approached

analytical solutions have validity during the reaction

time for which both assumptions (9) and (12) are also

observed. The values of the initial concentrations used

are similar to those in different experimental [14,20–

25] as well as theoretical [15,31] previous contri-

butions on zymogen activation.

The parameters h1 and t1 have been defined to

have a criterion to know when we can consider the

reaction to be finished, because in the simulation the

concentrations approach asymptotically to their limit

values and thus, we would need an infinite simulation

time. On the other hand, the parameter u is inserted to

quantify the time, if any, at which the predominance of

the activation changes to the inhibition or vice versa.

Figures 1–3 show different degrees of goodness of

the analysis according to the higher or less degree of

observation of assumptions (10). Figure 1 corresponds

to a case where the 2nd and 3rd of assumptions (10) are

not observed and Figures 2 and 3 correspond to cases

were assumptions (10) are observed (better in case (3)

than in case (2)). The better the observation of the first

three of the assumptions (10) is, the higher is the

reaction time in which the simulated (experimental)

progress curve would overlap with the plot of the

corresponding analytical equation. The uniexponential

Equation (20) has been obtained under assumptions

(10) and, therefore, under the assumption that the

reaction time assayed is such that [ET] ! [Z]0 [last of

assumptions (10)]. Therefore only that part of the

progress curve from t ¼ 0 where it is observed [ET] !

[Z]0 must be fitted to the uniexponential Equation (20).

The assumption of rapid equilibrium of the

reversible steps made in this contribution to obtain

Equation (20), apart from being the most frequently

used in enzyme kinetics [17,32,34], is specially

justified. Effectively, the step EZ!2E þ W requiresScheme 9.

Scheme 8.
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the cleavage of the propeptide, W, from Z in what is a

slow process, since a peptide bond must be cleaved

[28–32]. Moreover, in the two-steps irreversible

inhibitors, the first, reversible step is usually assumed

to be in rapid equilibrium [32–34]. The obtaining of

the time course of [ET] corresponding to the Briggs-

Haldane assumptions (no rapid equilibrium in the

reversible steps) has no difficulty, but once obtained it

is necessary, through reasonable assumptions, to

reduce it so that it becomes manageable. In our case,

as commented above, the time course equation for

[ET] derived under Briggs-Haldane assumptions

would result tetraexponential. If then it is assumed

that the reversible steps are in rapid equilibrium, the

equation for [ET] reduces to the uniexponential

Equation (20). In the present contribution we have

directly obtained Equation (20).

The analysis made here is applicable not only to

Scheme 1, but also to all the several different reaction

schemes which can be considered particular cases of it,

e.g. schemes 2–9. Thus, this analysis offers a useful tool

to kinetically characterise most of the autocatalytic

zymogen activation reactions involving reversible or

irreversible, competitive, noncompetitive or uncompe-

titive inhibitions, known or not at the present.
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Appendix

Set of differential equations describing the time course

of all of the species involved in Scheme 1

d½E�

dt
¼ 2k1½E�½Z�2 k3½E�½I� þ ðk21 þ 2k2Þ

� ½EZ� þ k23½EI� ðA:1Þ

d½EZ�

dt
¼ 2ðk21 þ k2Þ½EZ�2 k

0

3½EZ�½I
0�

þ k1½E�½Z� þ k
0

23½EZI
0� ðA:2Þ

d½EI�

dt
¼ 2ðk23 þ k4Þ½EI� þ k3½E�½I� ðA:3Þ

d½EZI 0�

dt
¼ 2ðk

0

23 þ k
0

4Þ½EZI
0� þ k

0

3½EZ�½I
0� ðA:4Þ

d½Z�

dt
¼ k21½EZ�2 k1½E�½Z� ðA:5Þ

d½I�

dt
¼ 2k3½E�½I� þ k23½EI� ðA:6Þ

d½I 0�

dt
¼ 2k

0

3½EZ�½I
0� þ k

0

23½EZI
0� ðA:7Þ

d½EI*�

dt
¼ k4½EI� ðA:8Þ

d½EZI 0*�

dt
¼ k

0

4½EZI
0� ðA:9Þ

d½W �

dt
¼ k2½EZ� ðA:10Þ
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